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We develop an approach to dynamical and probabilistic properties of the model unifying
general relativity and quantum mechanics, initiated in the paper (Heller et al. (2005)
International Journal Theoretical Physics 44, 671). We construct the von Neumann
algebra M of random operators on a groupoid, which now is not related to a finite
group G, but is the pair groupoid of the Lorentzian frame bundle E over spacetime M.
We consider the time flow on M depending on the state ¢. The state ¢ defining the
noncommutative dynamics is assumed to be normal and faithful. Then the pair (M, ¢)
is a noncommutative probabilistic space and ¢ can also be interpreted as an equilibrium
thermal state, satisfying the Kubo-Martin-Schwinger condition. We argue that both
the “time flow” and thermodynamics have their common roots in the noncommutative
unification of dynamics and probability.

KEY WORDS: unification theory; quantum mechanics; noncommutative dynamics;
noncommutative probability; random operators; von Neumann algebra.

1. INTRODUCTION

The present paper is a continuation of the paper (Heller et al., 2005a) (to which
we shall refer as to the previous paper) in which we have studied probabilistic
and dynamical properties of the model unifying general relativity and quantum
mechanics. The idea of the model, proposed in (Heller e al., 1997, 2000; Heller and
Sasin, 1999) is the following. We consider a principal fibre bundle 7y, : E — M
over spacetime M with a structural group G, typically the frame bundle with G =
S0p(3, 1). The right action of G on E naturally leads to the construction of the
transformation groupoid I' = E x G. On I" we define a noncommutative algebra
A of smooth functions (compactly supported, if necessary) with convolution as
multiplication and, in terms of this algebra and the module of its derivations we
develop the differential geometry of this groupoid. The “horizontal component”
of the geometry on I' reproduces the standard spacetime geometry (which is
contained in the geometry of the model as a suitable lifting from M). The regular
representation 7” : A — B(H?) of the algebra A in a Hilbert space H?, for every
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p € E, leads to a generalized quantum mechanics. In Heller ez al. (2004, 2005a)
we have tested this model for a simpler case when G is a finite group, and in Heller
et al. (2005b) we have extended this analysis to the case when G is a noncompact
group.

In the previous paper, we have demonstrated that every a € A, if suitably
represented in a bundle of Hilbert spaces, is a random operator, an element of
a von Neumann algebra M. Moreover, on the strength of the Tomita—Takesaki
theorem there exists a one-parameter group of automorphisms of the algebra M,
the so-called modular group, which depends on the state ¢ on the algebra M. This
one-parameter group can be used to define a noncommutative state depending
dynamics. Therefore, the pair (M, ¢) is a dynamic object. But it turns out that the
same object defines a noncommutative probabilistic space with ¢ playing the role
of the probability measure (see, e.g., Voiculescu, 1985; Voiculescu et al., 1992).
Thus the pair (M, ¢) is both a dynamic object and a probabilistic object. The
goal of the present paper is to go more deeply into this unification of the two
so far independent concepts and its physical signification. In the present paper
G is not necessarily a finite group. The obvious strategy is to connect dynamic
and probabilistic properties of the model with some generalized thermal-like
properties. The idea is strengthened by the fact that normal and faithful states on
the algebra M are Kubo—Martin—Schwinger states which, in the standard physics,
are interpreted as equilibrium thermal states (Gibbs states). We argue that the “time
flow” and the thermodynamics of our world can be deduced from noncommutative
probabilistic thermal-like aspects of our model. Since, however, we are dealing
with a subtle and not very well explored aspects of noncommutative geometry,
our interpretation must be based on hard mathematics. This is why the formal side
of the present paper is rather pronounced (with the ample Appendix containing
definitions and proofs of some mathematical facts).

To have a self-contained paper, in Section 2, we present basic mathematical
aspects of the model. In contrast to the previous paper, we define the groupod I"
as the pair groupoid which makes it more adapted to our present purposes. The
algebra A is defined accordingly. In Section 2, we study the von Neumann algebra
M of random operators, and in Section 3 its dynamic and probabilistic properties.
Physical interpretation is discussed in Section 5, and in Section 6 we look for the
consequences of the proposed interpretation in quantum and classical limits.

2. BASIC GROUPOID AND ITS CONVOLUTION ALGEBRA

Let E be the principal G-bundle over spacetime M, where G is a semisimple
Lie goup. (We can think that G is the Lorentz group and E is the frame bundle over
M).LetI' = E xj; E be a groupoid of the Whitney product of the bundle E with
itself,i.e. E Xy E = {(p1, p2) : p1, p2 € E, iy(p1) = wy(p2)}. Let us consider
the projections d, r : I' — E defined by d(p;, p2) = p1 and r(p;, p2) = p2, and
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let us distinguish the set I'® of composable elements I'® = {(y;,,) € I x ' :
r(y1) = d(y2)}.

For (y1,2) € T, y1 = (p1, p2), ¥2 = (p2. p3) we define the groupoid mul-
tiplication y; o y» = (p1, p3). The groupoid I' with this multiplication will be
called the pair-bundle groupoid.

It is clear that the inverse of y is always defined and is given by the formula
(p1, p2)~" = (p2, p1). Every element of the form y = (p, p), for any p € E, is
called the unit of the groupoid I'. Thus the space of units can be identified with
the set E.

In the papers mentioned in the Introduction we have studied a model unifying
general relativity and quantum mechanics in terms of a noncommutative algebra
A, of functions on a transformation groupoid I'y = E x G with convolution as
multiplicaton. Let us observe that the groupoids I'; and I' are isomorphic. Indeed,
the isomorphism j : I'y — T, is given by j(p, g) = (p, pg).

Let us introduce the following fibrations of the space I". For p € E we define
the set of elements begining at p

Iy={yel:dly)=p}={(p,p1):p1 € E.7u(p) =mu(p)}

Analogously, we define the set of elements ending at p

IP={yel:riy)=p)={p1,p) :p1 € E,my(p)) =mu(p)}

The sets I', and I'? are diffeomorphic to the fiber E, of the bundle E where
x = mp(p).

We consider the algebra A of smooth complex valued compactly supported
functions on I with convolution as multiplication. Let us recall that the groupoid
convolution is in general defined by the formula

(a xb)(y) =/ a(yDb(y;'y)dn.
Cag)
where a,b € A, y,y1 € T, and dy, is a measure on the set I'y,) which is an
element of the left Haar measure system of the groupoid I" (see Paterson, 1999).
In our case of the pair-bundle groupoid, the convolution assumes the following
form

(a*b)(Pl»P2):/ a(p1, p)b(p, p2)dp,

x

where 7y (p1) = wp(p2) = x
The measure dp on the fiber I',, > E| is related to the Haar measure on G
by the formula

/ f(p1, p) dp:/f(pl,plg)dg-
E, G
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It is clear that the collection of measures dp on the fibers I, >~ E; () forms a
left Haar system of the groupoid I'.
One can write

(a*b)(pl,pz)=/Ga(pl,plg)b(mg,pz) dg.

In the papers (Heller et al., 2004, 2005a,b; Pysiak et al., 2005 ) we worked with the
convolution algebra A; of the transformation groupoid I';. From the isomorphism
of the groupoids I'y and T it follows that the convolution algebras A; and A are
isomorphic as well.

3. VON NEUNMANN ALGEBRA OF RANDOM OPERATORS

Now, let us consider the regular representation 7, : A — B(H?”) of the al-
gebra A. Here H? denotes the Hilbert space of square-integrable functions on I'?,
HP = L*(I'?), and B(H”) denotes the algebra of bounded operators in +?.

We have the following formula

(T (@) (pi1. p2) = /

a(p1, p)¥(p, p2) dp =/Ga(p1,p1g)W(p1g,pz) dg.
E,

Now, let us define the maps 1, : L*(G) — L*(I'?) , for every p € E, by the
formula: ¥ (p1, p) = ¥°(p1/p), where ° € L*>(G) with p; such that my(p,) =
my(p), and p;/p denoting the unique element g of the group G such that
p1 = pg. From the definition of the scalar product in L>(I'?), which is (1, ) =
fEl Yi(p1, P)¥2(p1, p)dp1, one easily deduces that the maps /,, are isomorphisms

of the Hilbert spaces L*(G) and L*(T'?).
Now, let us define

Fpla)=1," omp@) o1,

Thus 7, is a representation of the algebra A in the Hilbert space L3(G), pt A—
B(L*(G)).

Proposition 3.1.

Fpge(@) =L, o fp(a)o Ly,.

Proof: First, let us notice that, for wo € L*(G), we have

(tp(@) 0 L)Y 1, p) = /G a(pr. P9V (s) dg.
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By putting p; = pg; we obtain

(@) g1) = / a(pg1, P9V (g) dg
G
which leads to

(L, o#tp(@)o Ly )y(g1) = /Ga(pgogl, pe)v’(g;'g) dg

= / a(pgogi, oMY (h) dh = (7,5, ¥°)(g1)
G

where in the second equality we have used the Haar measure invariance. O

Let usrecall some facts related to random operators. By definition, the random
operator r on the groupoid I' is a collection of operators (r,) ek, i.€., a function

r: E— LlB(Hp),

peE
such that

1. forevery ¢, ¥ € L*(G) the complex-valued function given by
E>p= (p@), 1,W) eC

is measurable with respect to the standard manifold measure on E;
2. given the norm of r by

|71l = esssup||r(p)ll,

one has ||r|| < co. Here “esssup” is taken with respect to p € E and
[l(p)ll, denotes the usual operator norm in the space B(HP).

Let us observe that, forevery a € A, the family of operators (77 ,(a)) ,c g forms
arandom operator. Indeed, the first condition is satisfied by the above formula for
the operator 7 ,(a). Let us denote a,(g1, g2) = a(pgi, pg>). It can be easily seen
that

@Il = [17Tp(@)ll < llaplli2xc) < suplal - C

where C is apositive constant. Thus the family 7, (a) satisfies the second condition
of the above definition as well.

Let # denote the realization of a random operator r in the space L?(G)
given by 7(p) = I, "o r(p) o I,. Now, we can introduce the concept of covariant
random operator on the groupoid I". By definition, it will be a random operator r
which satisfies the relation

F(pgo) = L, o F(p)o Ly,.

0
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Proposition 3.1 implies that the family (7r,(a)) < is a covariant random operator.
The operator of such a form will be denoted by r,.

Let M be the x-algebra of equivalence classes of covariant random operators
on I' (modulo equality almost everywhere of operator-valued functions defined
on E). It is clear that algebraic operations are defined in the pointwise way on
representatives in the usual manner and the class of the operator 1(p) = Idyy» is
the unit.

Let us observe that we have the following isomorphisms

M = LF(E, B(L*(G))) ~ L™(M, B(L*(G))),

(see Appendix B) and we conclude that M has the structure of a von Neumann
algebra. This algebra will be called the von Neumann algebra of the groupoid
I'. The second isomorphism can be understood as a generalization of the matrix
representation of the groupoid algebra constructed in the finite case in Heller et al.
(2004).

Let us denote by M, the subalgebra of M formed by operators r,, a € A.
In Appendix B we show that M is o-weakly dense subalgebra of M.

4. STATE-DEPENDENT EVOLUTION OF RANDOM OPERATORS

To describe the evolution of random operators we can make use of the
Tomita—Takesaki theorem (Sunder, 1987; Connes, 1994). We assume that ¢ is a
normal faithful state on M. We know (see Appendix B) that ¢(r) = Tr(r o) where
O is a trace-class operator (p € M,) called the density operator and r € M. Itis
easily seen that ¢ can be written in the form

¢(r) =Tr(pr) = /M tr(p(p)r(p)) dim(x)
where p(p) is a positive injective operator of trace-class in B(H?),forevery p € E,
and it is G-covariant. The above integral is taken with respect to the Lebesgue
type manifold measure on M and it is well defined since ¢r(5(p)r(p)) depends
only on x = my(p). With these conditions the state ¢ satisfies all conditions of
the Tomita—Takesaki theorem. There exists a basis {e;} in H” such that p(p)e; =
ri(p)ei, A; > 0. We also have

> xilp) = Mp) < o0

i=0

for almost every p € E, and A(-) € L'(E) with

/ AMp) duy(x) =1,
M
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and the integral is well defined. If we define the Hamiltonian H ¢ = Log o(p), we
have HZ’ (p)e; = (logh;(p))e;. We thus can write the state dependent evolution of
random operators r € M as

; (4 ; (
ol (r(p) = ' SHrr(p)e 5ty

Here we have denoted by af’ an automorphism of M, and {af}SGR forms a
one-parameter group of automorphisms (the “time evolution,” see below) of ran-
dom operators with respect to the parameter s € R (the so-called modular group).
After differentiating the above equation (and inserting /i for the correspondence
with the known quantum mechanical case) it can be rewritten as

d
iﬁah:oﬁf(r(m) = [r(p). H}].

This equation, describing the evolution of random operators with respect to
the parameter s € R, is a generalization of the Heisenberg equation of the usual
quantum mechanics. The essential difference is that now the dynamics depends
on the state ¢. How should we interpret this fact? As well known, von Neumann
algebras are regarded as a noncommutative counterpart of the measure theory, and
the pair (M, ¢), where ¢ is a normal and faithful state on M, is defined to be
a noncommutative probability space (see, for instance Voiculescu et al., 1992).
In contrast to the commutative case, where there is only one interesting measure
(the Lebesgue measure), in the noncommutative case there is a great richness of
measures. If we take into account the fact that the state ¢ is also a probability
measure, it seems natural that the evolution of random operators depends on
probability measure that has been used.

The question arises: what is the relation between two dynamics corresponding
to two different states (or measures) ¢ and /? We can answer this question by
applying the construction based on the Connes—Nicodym—Radon theorem (Sunder,
1987, p. 74, see also Connes, 1994). This is done in the following way. Let
U={ue M:uu* =u*u = 1} denote the unitary group of the algebra M, and
Aut M the group of all automorphisms of M. An automorphism A € AutM is
called inner if there exists an element u € U, such that

AD) = ubu*
for every b € M. Two automorphisms A and X, are said to be inner equivalent if
r1(b) = ury(b)u,

for every b € M.

In Appendix B we prove that M is semifinite. But the Dixmier—Takesaki
theorem (see Connes, 1994) says that if M is semidefinite then two groups of
modular automorphisms osd’ and o;/j are inner equivalent, i.e., for every s there



24 Pysiak

exists U in U such that
U,al (r(p)U; = o (r(p))

This fact can be interpreted by stating that two dynamics differ only on some
gauge transformation which can also be used to define the equivalence of the
corresponding measure spaces (M, ¢) and (M, ).

Another important property of a normal faithful state ¢ on M is that it sat-
isfies the Kubo—Martin—Schwinger (KMS) condition with respect to the group of
automorphisms {osd’}. (See Appendix C). This implies that the dynamics {of} sat-
isfies the condition: ¢ o of = ¢. KMS states are usually interpreted as equilibrium
thermal states (the generalized Gibbs states).

5. INTERPRETATION

Mathematical facts established in the preceding sections have far-reaching
consequences for our model. To disclose them is a goal of the present section. In
pursuing this goal we adapt the deep analysis made by Connes and Rovelli (1994)
to the context of our model.

Let us first consider a classical Hamiltonian system. Its phase space is denoted
by X, and its observables are elements of C*°(X). The Hamiltonian H of the
system defines a flow

ot,::Z—>E,

t € R, which can be regarded as a counterpart of the Schrédinger picture of
quantum mechanics. The same dynamics can be presented with the help of the
one-parameter group of automorphisms of the algebra C°°(X) in the following
way

(o f)(x) = flaFx),

for f € C*®(X), x € X, whichis clearly the counterpart of the Heisenberg picture.

In our model there is no “external time parameter,” and consequently we
cannot hope to implement the “Schrédinger picture,” but we can generalize the
“Heisenberg picture” with the help of the one-parameter group of automorphisms
of the algebra of random operators. We thus make the assumption that in our model
the “time flow” is defined by the modular group {asd’ }ser. This one-parameter group
depends on ¢ which is interpreted both as a state and as a probability measure.
Since we are dealing with random operators it is natural that their dynamic depends
on the probability definition.

We meet similar situations, where dynamics involves probability, in classical
statistical mechanics and in quantum field theories with thermal field fluctuations.
Basing on these analogies we can guess that the dynamics of random operators
in our model is also connected with “thermal-like fluctuations” with respect to
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a given probability measure ¢. In classical statistical mechanics the equilibrium
thermal states (Gibbs states) are given by the formula

o~ e Pl

where B8 = 1/kT, and k being the Boltzmann constant and 7' the absolute tem-
perature. Therefore, the time flow «, of classical statistical mechanics, in a given
inverse temperature B, can be recovered from both the Gibbs state p and the
Hamiltonian H. In our model there is no unique Hamiltonian, thus the only way
to recover the above mentioned analogies is to use the generalized Gibbs states,
i.e. normal, faithful states ¢ on the von Neumann algebra M which, as we have
seen, are just KMS states.

In classical statistical mechanics, a given state is not represented as a point
in the phase space but as a measure on it. With the help of this measure the
mean values of observables are defined. If the system finds itself in a constant
temperature, the corresponding measure is called Gibbs canonical ensemble. In
our case, the role of a measure is played by KMS states ¢. By following the
analogy with classical statistical mechanics we could say that we have an enseble
of probability spaces (M, ¢)scr Where F denotes the collection of normal and
faithful states on M, and the dynamics of the system is given by modular groups
. Our claim that both the “time flow” and thermodynamics have their common
roots in the noncommutative unification of dynamics and probability seems to be
fully justified.

6. QUANTUM MECHANICAL LIMIT

Let us denote by My, the subset of Hermitian random operators in M. Let
us further assume that r, € Moy. Since 7, is *-representation of the algebra A,
then r, = m,(a) for a Hermitian element of A (a € A is Hermitian if a(p1, p») =
a(pa, p1) for every pi, p» € E). The operator r, is compact for a € A as an
integral operator in the space L?(I'?). On the strength of the spectral theorem
for Hermitian compact operators in a separable Hilbert space, there exists in H?”
an orthonormal countable basis composed of eigenvectors {1;};<; of the operator
rq(p). Therefore, we can write its eigenvalue equation as

ra(PIVi(p) = Ai(P)Y¥i(p)

forevery p € E.Here ; : E — Risaneigenfunction (not an eigenvalue) of r,(p).
In this sense the above equation should be called the eigenfunction equation rather
than the eigenvalue equation. However, when a measurement is performed at a
given place x € M (i.e., in a local frame p € n,;,l (x)), then the eigenfunction
Ai(p) collapses to the eigenvalue A;(p). This also singles out the isomorphism
I; I': HP — L?*(G) which automatically reproduces the usual quantum mechanics
(on the group G) (for details see: Heller et al., 2005b).
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We could summarize the above considerations by saying that it is the very
act of measurement that cuts off the usual quantum mechanics from a larger
noncommutative structure. This fact could be responsible for many peculiarities
of this physical theory.

We should also notice that the above interpretation of the origin of the
time flow and thermodynamics, when applied to quantum systems in thermal
equilibrium, reduces to the usual approach. Indeed, the state of a quantum system
(with a finite number of degrees of freedom) is described by the Gibbs density
matrix

p=Ne Pl

where H is the Hamiltonian of the system and N = (tr(exp[—B8H])~'. The mod-
ular group corresponding to the flow generated by the Hamiltonian H is given
by

o A = Pl A p=iBtl
A=

where A is an element of a suitable algebra of observables. To show this we
must take into account the uniqueness of the modular group a,¢ for a KMS state
¢ (Appendix C, Proposition C.1, condition 3) and perform the time rescalling
t — Bt (for a full discussion see Connes and Rovelli, 1994, Section 4).

APPENDIX A: GLOSSARY-VON NEUMANN ALGEBRA,
ITS STATES AND WEIGHTS

e A *-subalgebra M of the algebra B(H) of bounded operators on a Hilbert
space H is called the von Neumann algebra if it satisfies one of the
following equivalent conditions:

1. If we denote by M” the double commutant of M, where the com-
mutant M’ = {A € B(H) : AB = BA for all B € M} and M" =
(MY, then we have

M=M"

2. M is weakly closed in B(H).
3. M is o-weakly closed in B(H).
(Sunder, 1987, Introduction). The statement of equivalence of the above
conditions is called the von Neumann double commutant theorem.
® A linear functional ¢ : M — C is a state on M if ¢(r) > 0 for every
r € M,,where M = {x - x* : x € M} is the subset of positive elements
of M, and (1) = 1.
e A functional ¢ : M — [0, co]isaweightif ¢ is additive, i.e., o(x + y) =
¢(x) + ¢(y), and positively homogeneous, i.e., ¢(Ax) =A@(x), for R >
A >0, x,y € M. We additionally assume that A + 00 = 00, A - 00 = 00



Time Flow in a Noncommutative Regime 27

if A #£0,and X - co = 0 if A = 0. Let us notice that every state defines a
weight.

e A weight ¢ is faithful if forr € M one has: ¢(r) =0=r =0.

e A weight ¢ is normal if ¢(r) = sup ¢(r;) provided r is the supremum of a
monotonically increasing net {r;} in the collection of positive operators in
M. (The sufficient and necessary condition for a weight ¢ to be normal is:
@(x) =Y. ¢; for a family {¢;} of normal states. (Bratteli and Robinson,
1987, Theorem 2.7.11).

® A state ¢ is normal if there exists a density matrix 9, i. e. a positive
trace-class operator ¢ with 7r9 = 1 such that ¢(r) = Tr(or). (Bratteli and
Robinson, 1987, Theorem 2.4.21).

e Letus define: D, := {x € M, : p(x) < oo} and M, := Spanc(D,), i.e.
M, is the space of C-linear combinations of elements of D,. A weight ¢
is semifinte if M, is o-weakly dense in M. (Sunder, 1987, p. 56).

e A weight ¢ is a trace if o(r* - r) = ¢(r - r*), for every r € M.

e A von Neumann algebra M is semifinite if there exists a faithful, normal,
semifinite weight ¢ on M which is a trace.

APPENDIX B: PROPERTIES OF THE ALGEBRA M
OF COVARIANT RANDOM OPERATORS

Theorem B.1. Let M be the algebra of covariant random operators on T'. Then
1. We have *-algebraic isomorphism
M = LE(E, BULXG)) = L¥(M, B(L*(G))).

2. M is a von Neumann algebra of operators on the Hilbert space H =
L*(M, L*(G)).

Proof: As we have seen in Section 3, a covariant random operator r has, for
every p € E, a realization #(p) in the Hilbert space L*(G) which satisfies the
condition 7(pgo) = L;ﬂ' o 7(p) o Lg,. We shall denote the algebra of classes of
such random operators by L (E, B(L?*(G))). Let s be a measurable section of
the bundle 7y, : E — M, ie.s : M — E such that m,(s(x)) = x. Let us define,
for x € M, the operator 7(x) = #(s(x)) acting in the Hilbert space L?(G). In this
manner we obtain a measurable operator-valued function M 3 x — 7(x), which
is bounded with respect to the norm [|7|| = esssup||7(x)||, and the function 7
defines an element of the algebra L>®(M, B(L*(G))). Let us recall that the action
of the group G on the bundle E is free and transitive on the fibers. This fact
together with the covariance condition of the operator 7 implies that the mapping
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LZ(E, B(L*(G)) — L*®(M, B(L*(G))), given by 7 > 7 is a bijection. It is clear
that it is an isomorphism of algebras. This ends the proof of part 1.

To prove the second part, let us consider the representation of the alge-
bra M ~ L>®°(M, B(L?*(G))) in the Hilbert space H ~ L?>(M, L*(G)) given by
(AY)(x) = A(x)Y(x), where A e M,y € H,x € M.

It is well known that this algebra is a von Neumann algebra (see Connes,
1994, ch. V, p. 452) and it can be represented as a direct integral of factors. a

Let us consider the following trace in the von Neumann algebra M =~
L¥(M. BLX(G))):

TV(A)=/MIV(A(X)) dp(x),

where A € M and tr denotes the canonical trace in the Hilbert space L*(G), i.e.
trA(x) = Zi(A(x)w,-, ¥;), with (¥;) being an orthonormal basis in L?(G). Tr
is a linear functional on M, and if restricted to M, is a weight. This weight
is faithful. Indeed, for A = A, - A} with A; € M, the condition 7rA = 0 means
tr(Ai(x) - Aj(x)) = 0 for almost every x € M. But this leads to the conclusion
that A = 0.

Let us denote by M, the space M4 introduced in Appendix A for the weight
¢ = Tr. This space has the structure of a Banach space with the norm Tr|A|, and
is called the predual of M. We shall call the elements of M, the trace-class
operators. It is known that M is the dual space of M., if the duality is given by

M x M, 3 (A, p) = Tr(Ap)

(See Bratteli and Robinson, 1979, Section 2.4.3).

The o-weak topology on M is the weak *-topology, inherited by M on the
strength of the above duality (See Sunder, 1987, p. 10). Let us observe that normal
states are precisely o-weakly continuous states and are given by ¢(A) = Tr(Ap)
for some p € M, N M and Tr(p) = 1.

Now, we can show that Tr is a normal weight on M. Since the measure
on M is o-finite, one has a compactly supported sequence of functions f; > 0,
fie LY(M)and Y f; = 1. Let Py, denote the projection onto the basis vector
Y in L?*(G). It is clear that p; j = fi Py, are trace-class operators and, by defining
¢ij(A) = Tr(p;; A), we obtain Tr(A) = Y ¢;;(A). This proves that Tr is a normal
weight.

Let p be a function defined on M x G x G, such that p(x, g1, g2) >0,
o(x, g1, 82) = p(x, g2, 81) for every x e M, g;,go€ M and p e L'(M x G x
G). We assume that p has its L' - norm equal to one. Such a function p will be
called the density function of a given state.
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Proposition B.2. Normal states on M restricted to M are integral functionals
of the form

P(A) = / ax, g1, g2)p(x, g1, 82) dgidgy du(x)
GxGxM

where A € My, A = (n,(a))pek, is the random operator corresponding to the
functiona € A, a(x, g1, 2) = as0(g1, &2) = a(s(x)g1, s(x)g2), and p is the den-
sity function.

‘We omit the proof which is a standard calculation using the properties of the
orthonormal basis of the Hilbert space L%(G).
We end this Section with the following

Theorem B.3.

1. The subalgebra M is o-weakly dense in M.
2. The von Neumann algebra M is semifinite.

Proof: We have seen that for A € M, A(x) is an integral operator in L*(G),
thus it is compact. This implies that A can be approximated by finite-rank operator
valued functions on M. But this means that M, is o-weakly dense in M. The
second part is now obvious since My C M., and we obtain the semifinitness of
the weight 7r. But we have already seen that it is normal faithful trace. a

APPENDIX C: KMS STATES ON THE VON NEUMANN ALGEBRA M

Definition C.1. A state ¢ on the von Neumann algebra M is said to satisfy
the Kubo-Martin—-Schwinger condition with respect to a one-parameter group
{os : s € R} of automorphisms of M if, for each A, B € M there exists a bounded
continuos function F : {z € C: 0 < Imz < 1} — C, which is analytic in the in-
terior of the strip, and satisfies.

F(s +1i) = ¢(Aos(B))
and
F(s) = ¢(05(B)A),
for all s € R. For brevity, we shall call such a ¢ the KMS state.

Proposition C.2. (See Sunder, 1987)
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1. If ¢ is a KMS state with respect to a one-parameter group {o; : s € R}
then ¢ is os-invariant, i.e.

pooy=¢

2. Let ¢ be a normal faithful state and {0,¢ 1t € R}—the one-parameter
group given by the Tomita-Takesaki theorem. Then ¢ satisfies the KMS
condition with respect to {O’,¢ .t € R}, and thus ¢ o o,d’ = ¢.

3. The one-parameter group {U,¢ :t € R}, for which ¢ is a KMS state is
uniquely determined.

We end this subsection by checking directly that a normal faithful state ¢ on
our algebra M of random operators satisfies the KMS condition with respect to ol

As we have seen ¢(A) = Tr(Ap) for some p € M, N M., and Tr(p) = 1.
Let us define, for z € C,

o (A(p)) = ¢ A(p)e s,
and
F(z) = ¢(a?(B)A).

Then F(z) is analytic in the strip {z € C:0 < Imz <1} and continu-
ous on its closure. It follows that F(s)= ¢(05¢(B)A) and F(s+1i)=
¢(ei(s+i)114; Be—its+Il} A) = Tr(e—”ﬁe””ﬁ Be—isllﬁeH,‘fAb\)‘

Now, the fact that p = e!? and the property of trace imply that F(s + i) =
$(A0!(B)).
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